
1

OAuth-IoT: an access control framework for the
Internet of Things based on open standards

Savio Sciancalepore1,2, Giuseppe Piro1,2, Daniele Caldarola1,2, Gennaro Boggia1,2, and Giuseppe Bianchi2,3
1 Department of Electrical and Information Engineering (DEI), Politecnico di Bari, Bari, Italy; e-mail:

{name.surname}@poliba.it.
2 CNIT, Consorzio Nazionale Interuniversitario per le Telecomunicazioni

3 Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy; e-mail:
giuseppe.bianchi@uniroma2.it

Abstract—While the Internet of Things is breaking into the
market, the controlled access to constrained resources still
remains a blocking concern. Unfortunately, conventional solutions
already accepted for both web and cloud applications cannot be
directly used in this context. In fact, they generally require high
computational and bandwidth capabilities (that are impossible to
reach with constrained devices) and offer poor interoperability
against standardized communication protocols for the Internet of
Things. To solve this issue, this contribution presents a flexible
authentication and authorization framework for the Internet of
Things, namely OAuth-IoT. It leverages and properly harmonizes
existing open-standards (including the OAuth 2.0 authorization
framework, different token formats, and the protocol suite for
the Internet of Things tailored by the Internet Engineering
Task Force), while carefully taking into account the limited
capabilities of constrained devices. Functionalities and benefits
offered by OAuth-IoT are pragmatically shown by means of
an experimental testbed, and further demonstrated with a very
preliminary performance assessment.

I. INTRODUCTION

The Internet of Things (IoT) is emerging as a concrete
communication paradigm allowing smart objects to realize a
capillary networking infrastructure connected to the Internet.
With the widespread diffusion of advanced IoT applications
and services, the definition of proper secure mechanisms is
gaining momentum in the research and industrial communities
[1]. Nevertheless, while many turnkey solutions already exist
for both data confidentiality and key agreement [2][3], the
discussion on authentication and authorization services is still
open to novel and effective approaches.

The present contribution focuses on a scenario where an
IoT network exposes restricted resources outside, third-party
applications may be interested to reach these resources, and
access requests must be authorized by resource owners.

In the current Internet, this problem was smartly solved
by OAuth 2.0 [4]. The adoption of OAuth 2.0 in the IoT
was preliminary investigated in [5], and a concrete proposal
was discussed in [6]. In particular, [6] introduced a new
centralized entity (namely IoT-OAS) that is in charge of
validating access requests sent by a third-party application,
on behalf of the server that exposes IoT resources. Thus,
this additional component makes the proposal not completely
standard compliant and reaches the integration of OAuth 2.0

and accepted communication protocols for the IoT by means
of a customized scheme. Additional lightweight approaches
to solve authentication and authorization in the IoT context
are available in the literature, like [9]. More recently, Internet
Engineering Task Force (IETF) Authentication and Authoriza-
tion for Constrained Environments (ACE) working group is
promoting the adoption of the OAuth 2.0 approach in scenarios
where applications and resources are available on constrained
devices, both connected to the same IoT domain [7][8]. All of
these solutions, however, do no match the scenario considered
in this contribution.

With reference to the target scenario, the design of an
access control mechanism should consider that: (i) OAuth 2.0
cannot be directly used in the IoT context, because of its
expensive computational and bandwidth requirements; (ii) the
communication protocol for the IoT proposed by the IETF
does not natively offer such kind of mechanisms; and (iii)
no solutions addressing the interoperability between OAuth
2.0 and IETF protocol stack were already presented in the
literature.

In line with these premises, this paper presents the OAuth-
IoT framework, which offers resource access control mech-
anisms for IoT resources, by leveraging and properly har-
monizing existing open-standards, while taking care of the
limited capabilities of constrained devices. In OAuth-IoT, IoT
resources are discovered and exposed through well-known
mechanisms standardized by the IETF [10]. A gateway device
stores details on available resources, provides an interface be-
tween the IoT network and the Internet, verifies authorization
permissions of third-party applications interested to access the
exposed resources, and implements a caching mechanism for
efficiently serving multiple requests with limited freshness re-
quirements. OAuth-IoT also integrates an Authorization Server
that authenticates the resource owner and authorizes a third-
party application to access to one of the aforementioned IoT
resources. While the entire process is completely based on the
OAuth 2.0 specification, authorization grants may be handled
with a variety of tokens formats, as bearer, JSON Web Token
(JWT) and Proof-of-Possession (PoP) tokens. In order to show
the effectiveness and benefits of the proposed framework, also
an experimental testbed has been developed and made publicly
available at http:// telematics.poliba.it/oauth-iot.

2017 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-1629-1/17/$31.00 ©2017 IEEE

2

The rest of the paper is structured as follows. Reference
open standards are discussed in Section II. Section III de-
scribes components and functionalities of the proposed OAuth-
IoT framework. Section IV highlights its features through real
experiments. Finally, Section V draws conclusions and future
works.

II. REFERENCE OPEN STANDARDS

A. The IETF protocol stack for the IoT

The IETF dedicated many efforts to the definition of
standard protocols for IoT networks based on the IEEE
802.15.4 radio [11]. The resulting communication stack in-
tegrates many protocols, including Constrained Application
Protocol (CoAP), Routing Protocol for Low Power and Lossy
Networks (RPL), IPv6 over Low-power and Lossy Networks
(6LoWPAN), and 6top.

The discovery of IoT resources was standardized in [10].
The procedure is initiated by the coordinator of an IoT system
(e.g., the sink node), every time it recognizes that a new device
joins the network. In this case, it sends to the aforementioned
device a GET message to the well-known resource Uniform
Resource Identifier (URI) /.well − known/core. Then, the
device answers with a message containing information related
to the resources it exposes, expressed according to the CoRE
Link Format [10]. Reported information include ’resource
type’ (i.e., a string that semantically describes the resource,
through an ontology), ’interface description’ (i.e., the URI
associated to the resource), and ’maximum size estimate’ (i.e.,
the maximum size of the resource representation that can be
returned to the GET request). They are stored within the so
called Resource Directory.

Note that the Resource Directory provides a complete
overview of resources exposed by an IoT network: any external
user can retrieve these details, learn about the URI associated
to the resources, and generate requests. Thus, the IETF pro-
tocol stack for the IoT does not provide any explicit access
control mechanism.
B. OAuth 2.0

OAuth 2.0 is an authorization framework standardized in
[4]. It was designed in order to allow a third-party appli-
cation to access to restricted resources under the control of
a user, without requiring the sharing of user’s credentials.
The architecture embraces four actors, that are a third-party
application willing to access to protected resources (i.e, the
client), the Resource Owner able to grant or deny access
to a protected resource, the Resource Server that exposes
protected resources, and the Authorization Server that controls
the authorization process. These actors establishes an end-to-
end Transport Layer Security (TLS) channel and interacts each
other during the resource access procedure, as summarized
in what follows: (1) the client contacts the Resource Owner
of the resource; (2) the Resource Owner grants the access
to the client by sending an authorization code; (3) the client
delivers the received authorization code to the Authorization
Server; (4) the Authorization Server verifies the authorization
code and releases a token containing the details of the consent
provided to the client (time limit, scope, and so on); (5)

the client forwards the token to the Resource Server; (6) the
Resource Server checks the validity of the received token and,
in affirmative case, it provides the protected resource. The
definition of the token structure is out of scope of the standard.

OAuth 2.0 cannot be directly used to control the access
to resources available within an IoT network. Constrained
devices, in fact, do not have enough computational and
bandwidth capabilities to support the establishment of a TLS
connection, to implement all the tasks envisaged for the
Resource Server, as well as to exchange heavy messages (that
also include tokens) within acceptable latencies.

In line with these premises, the IETF ACE working group,
is promoting the adoption of a lightweight implementation of
OAuth 2.0 in scenarios where both applications and resources
are available within the same IoT network, evidently installed
on constrained devices. In particular, OAuth 2.0 interactions
are enabled by means of CoAP messages, carried through
a Datagram Transport Layer Security (DTLS) channel [7].
Moreover, new token formats, more suitable for low-power
short-range and lossy wireless links, are defined in [8].

These solutions, however, cannot be successfully applied
in the scenario considered in this contribution, where the user
interested to reach constrained resources is located outside the
IoT network and would like to interact with OAuth 2.0 and
IoT entities by using conventional communication protocols
for the Internet.

C. IETF token formats

Token format is out of scope of OAuth 2.0, but some
interesting proposals comes from the IETF. For instance,
Bearer Tokens are defined in [12] as simple containers of in-
formation. The majority of OAuth 2.0 implementations adopts
this solution, even if no embedded security mechanisms are
provided. In this case, token confidentiality is delegated to the
mandatory TLS protocol. The JSON Web Token (JWT) is a
compact way for carrying the access grants [13]. It leverages
the standard JSON format for storing and assess common
claims (including time validity, issuer, owner and revocation
time) and authentication fields. There is also the possibility
to extend the token format with unregistered private claims,
useful for specific purposes. Finally, the Proof-of-Possession
(PoP) tokens have been defined in [14] and can be used in
scenarios demanding additional security protection. In fact, the
main idea behind PoP tokens is that a client must demonstrate
possession of cryptographic keying material when making
requests for accessing protected resources. Both symmetric
and asymmetric cryptography can be used in this case.

Given the presence of different solutions under investiga-
tion, a flexible access control framework for the IoT should
be designed in order to support all the possibilities emerging
from the literature and standardization areas.

III. THE PROPOSED OAUTH-IOT FRAMEWORK

The developed OAuth-IoT framework offers access control
mechanisms for the IoT, by properly leveraging and har-
monizing the widely used open standards described in the
previous Section. The reference architecture depicted in Fig.
1 is considered. It embraces the following components:

2017 IEEE Symposium on Computers and Communications (ISCC)

3

1. Internet of Things network. It integrates many constrained
devices able to sense the surrounding environment, acquire
data (such as temperature, humidity, luminosity, and acceler-
ation) and deliver them to a sink node, also called network
coordinator, through a low-power and short-range wireless
communication technology. The sink node is attached to the
Gateway, that acts as a Resource Server and offers many
functionalities listed below.
2. Client. In line with the OAuth 2.0 authorization framework,
it is a third-party application willing to reach resources be-
longing to an IoT network, on behalf of the resource owner. It
would access remote resources through OAuth 2.0 primitives.
3. Gateway. It is a key node of the proposed architecture, that
implements the OAuth 2.0 Resource Server and an interface
between OAuth 2.0 and the IETF protocol stack. Indeed,
it offers security functionalities (e.g., establishment of TLS
channel with the client, authentication, and access control), the
tracking of available resources (through the resource discovery
procedure), and other system functionalities (e.g., data caching
and freshness controls).
4. Authorization Server. It manages authorization mecha-
nisms, as detailed by the OAuth 2.0 authorization framework.

Fig. 1. Reference architecture.

A. Resource management

The gateway represents the key point of contact between
OAuth 2.0 and the IoT ecosystem. In fact, it is in charge of
storing information related to available resources, as well as
exposing them to the rest of the architecture through OAuth
2.0 authorization primitives. To reach this goal, it hosts three
different data structures, that are Routing Table, Resource
Directory, and Data Table. They are populated thanks to
the continuous interaction between the sink node of the IoT
network and the Resource Server.

The Routing Table contains the identifier of all nodes
currently active in the IoT network, along with information
about the path that is used to communicate with each of them.
According to the RPL protocol, the sink node periodically
sends Destination Oriented Directed Acyclic Graph (DODAG)
Information Object (DIO) messages within the IoT network,
for discovering constrained devices. When a new node joins
the network, it answers with a Destination Advertisement
Object (DAO) message. In OAuth-IoT, the sink node delivers

8. Request Resource

9. Client Authentication

10. Ask Authorization

11. Type Credentials

16. Request to constrained device

17. Response18. Protected Resource

5. ./well-known/core

6. rt, if, sz

1. DIO

2. DAO

4. Populate
Routing Table

3. DAO

7. Populate
Resource Directory

12. Credentials

13. Resource Owner
Authentication

14. Create Token

Resource
Owner

Gateway IoT network
sink node

Authorization
Server

constrained

device

15. Token Exchange and Validation

Client

Fig. 2. Resource access procedure implemented in OAuth-IoT.

information stored within the aforementioned DAO message to
the gateway, which will update the Routing Table accordingly.

Once a new record is added to the Routing Table, the
gateway initiates the resource discovery procedure by polling
the identified constrained device at the path ./well-known/core.
The corresponding answer is properly processed for populating
the Resource Directory.

When a new data is acquired from the IoT network, the
gateway updates the Data Table. Specifically, each record of
that table stores identification data about the resource (i.e.,
the Resource Type attribute previously received with the Core
Link Format message), the IPv6 address of the node exposing
the resource, the timestamp (i.e., the time instant at which the
data has been generated), and the value of the data itself. In
other words, the Data Table acts as a cache and can be used to
generate answers to external requests, thus limiting the overall
energy consumption within the IoT network.

B. Resource access procedure
Fig. 2 shows the sequence diagram related to the resource

access procedure implemented in OAuth-IoT.
At the top-right of the figure, it is possible to observe the

interaction between the gateway and the IoT network, needed
to populate the Routing Table and the Resource Directory,
already explained in the previous sub-section.

On the left-side of the figure there is the client, that would
like to access to a resource available in the IoT network. To
this end, it starts the authorization procedure based on the
OAuth 2.0 work flow. At the beginning, it sends a request to
the Authorization Server that, in turns, asks the authorization
to the resource owner. The resource owner (i.e., the user that
is using the application) types username and password, au-
thorizing the access. Then, the Authorization Server generates
the token and forwards it to the client. Then, the gateway
processes the token (see Section III-C for more details) and
generates the answer (according to the procedure described in
Section III-D).

It is worth noting that the gateway can quickly response
to the application if the requested resource is already in the

2017 IEEE Symposium on Computers and Communications (ISCC)

4

database and meets the conditions requested by the client (i.e.,
freshness). If this is not the case, the HTTP request is mapped
to a CoAP request and forwarded to the node that provides it.
For this reason, the messages 16 and 17 in Fig. 2 are optional
and they have been illustrated through dotted lines.

C. Details on tokens

OAuth-IoT natively supports any token format. To make
concrete examples, we explain in more details the adoption of
bearer, JWTs, and PoP tokens.

With bearer tokens, no cryptography technique is used to
protect the content of the token. Thus, as shown in Fig. 3(a),
the gateway processes immediately the token at the reception
time, without any cryptography validation.

If JWTs are used, the token contains a sign field, used to
validate the content. It can be generated both by using symmet-
ric or asymmetric cryptography techniques. The asymmetric
cryptography case is considered herein. Let PVas and PBas

be the private and public keys of the Authorization Server,
respectively. The Authorization Server signs the token T as in
Eq. 1:

ST = E(H(T), PVas), (1)

where H(·) is a generic hashing function and E(·) is a generic
public-key encryption algorithm. As shown in Fig. 3(b), the
client forwards the token to the gateway, which validates the
sign by checking that H(T) = E(ST , PBas).

In the case of PoP tokens, a cryptographic value is delivered
by the Authorization Server to the client and then used by the
client to create a proof that demonstrates the possession of
the secret. The Authorization Server also shares that secret
with the gateway by means of different approaches (including
token introspection or shared database) [14]. The symmetric
PoP scheme is investigated in the sequel. As shown in Fig.
3(c), the Authorization Server generates a secret k every time
a new client requests a token. Then, the token and the secret
are delivered to the client. The token stores the confirmation
claim: CNF = H(K). The client must demonstrate that it is
the real owner of the token. To this end, it uses the received
secret for calculating a Message Authentication Code (MAC),
MT , of the token itself:

MT = E(H(T), k), (2)

Then, the client delivers to the gateway the token and the
calculated MAC. To validate the token, the gateway retrieves
the secret (by using one of the aforementioned approaches,
as suggested in [14]) and verifies that both the confirmation
claim stored in the token and the MAC sent by the client are
correct.

D. Gateway’s operations

The set of operations executed by the gateway are illustrated
in Fig. 4.

When the gateway receives a new request, it extracts the
token, the identifier of the constrained node exposing the
resource, the requested resource, and a data freshness param-
eter. The token is firstly validated. If the token is not valid,
the gateway returns the well-known 403 forbidden error code

(a)

(b)

(c)

Fig. 3. Token exchange and validation, when (a) bearer, (b) JWT, and (c)
PoP tokens are used.

and the request is rejected. Otherwise, the gateway checks
the availability of the requested resource in the Resource
Directory. In the case the resource is not available, the gateway
returns the well-known 404 not found error code and closes
the session. If the resource is available, the gateway checks
the presence of the requested data within the Data Table. If
a record is found and the associated timestamp satisfies the
freshness requirement reported in the request, the gateway
immediately delivers to the client the cached value (i.e.,
without contacting the constrained node in the IoT network
that exposes the requested resource). If not, the gateway
generates a GET request using CoAP and sends it into the
IoT network. Now, in the case the node is not reachable,
the 503 service unavailable error code is generated and the
session is closed. On the contrary, the contacted constrained
node answers with the requested data that will be processed
and stored within the Data Table of the gateway (first) and
pushed back to the client (then).

IV. TESTBED AT WORK

An experimental testbed has been developed to
practically demonstrate the main functionalities of the
conceived OAuth-IoT framework. It is available at:
http://telematics.poliba.it/oauth-iot.

The IoT network hosts three OpenMote1 constrained devices

1The OpenMote-CC2538 is equipped with a 32-bit Cortex-M3 microcon-
troller, 32 kB of RAM memory, and 512 kB of Flash. It can be connected to
the OpenBattery containing four different sensors, i.e. temperature, humidity,
light, and acceleration.

2017 IEEE Symposium on Computers and Communications (ISCC)

5

START

Receive new HTTP GET request and extract

- token

- node

- resource

- options (i.e. data freshness)

YES

Token Verification

Is token

valid?

NO

YES

Verify node existence

(interaction with the Resource Directory)

Does the

node exist?

NO

YES

Check options in the Request

(i.e., time constraints)

Does the

resource exist?

NO

YES

403 Forbidden

404 Not Found
Verify resource existence (interaction with

the Resource Directory)

Can I provide the

cached data? (check

the Data Table)

YES

NO

Send a CoAP GET to the

URI in the Data Table

Update the Data

Table

Is the node

available?

NO

YES

200 OK

Provide HTTP response

503 Service Unavailable

END

Fig. 4. Flow diagram of the operations executed by the gateway when a new
HTTP request arrives from the Internet.

[15]: one sink node and two leaf nodes exposing resources
(i.e., temperature, humidity, light, and acceleration). They run
the OpenWSN stack [16], which is an open source implemen-
tation of the IETF protocol suite described in Section II.

Both Authorization Server and gateway components are
implemented on a Pandaboard ES platform. It is an embed-
ded computer, integrating dual-core 1.2GHz ARM Cortex-A9
MPCore CPU, 384 MHz PowerVr SGX540 GPU, IVA3 mul-
timedia hardware accelerator with a programmable DSP, 1GiB
of DDR2 SDRAM, as well as SD Card slot, 10/100 Ethernet,
Wi-Fi, Bluetooth interfaces, output video signal via DVI and
HDMI interfaces, and two USB ports. Authorization Server
and Resource Server (RS) processes are implemented by using
the open-source python framework Djangoand the open-source
database PostgreSQL. Without loss of generality, the testbed
includes the symmetric PoP architecture to create, manage and
validate tokens. The Advanced Encryption Standard (AES)
encryption algorithm and the Secure Hash Algorithm (SHA)
hashing algorithm, used for the management of PoP tokens,
are implemented through the open-source PyCrypto library.
Django interacts with PostgreSQL to verify if requested re-
sources are available and if a valid copy is already cached. In

the case an interaction with the IoT network is needed, Django
and OpenWSN interact each other to generate CoAP requests
and handle responses from constrained devices.

Resources can be requested by using a web-based applica-
tion running over TLS, directly connected with a web server
running on the gateway. It has been realized by using the open-
source library JQueryand it is able to manage multiple AJAX
calls.

Fig. 5 shows the GUI of the OAuth-IoT testbed with the
three tasks controlled by the client. The client can select
the constrained node (i.e., ed1a and ed8a), the resource
(i.e., /light for the brightness, /temp for the temperature,
/humid for the humidity, and /accel for the acceleration),
and the desired freshness (i.e., 10 seconds). The request is
then processed by the Authorization Server, that initiates the
authentication procedure. A recognized user has username =
test and password = oauth-iot. Finally, the client can proceed
to effectively send the request to the gateway. The answer is
reported at the bottom of the web-page.

To provide a further insight, a preliminary performance
analysis was carried out for evaluating the impact of the
OAuth-IoT work flow on the amount of time needed to
successfully reach the requested resource. Two freshness re-
quirements were considered: hard and limited. In the first
case, the client selects a very little freshness value and its
requests are always forwarded to the IoT resource. In the
second case, instead, the client selects an higher freshness
value, thus allowing the gateway to answer with data already
available in the cache. In addition, the comparison with respect
to the simple scenario that does not consider any access control
mechanism (i.e., the client directly contacts the gateway) is
provided. Fig. 6 shows the Empirical Cumulative Distribution
Function (ECDF) of the measured latencies, achieved by
considering 10 different measurements of the times necessary
to perform all computations and communications tasks, while
neglecting times necessary to type input parameters. Reported
results clearly demonstrate that security functionalities intro-
duced by OAuth-IoT increase the amount of time needed to
successfully reach the requested resource. In particular, the
token management process introduces an average increment
of latencies equal to 1.1s. However, in the case the client
selects a limited freshness value, the caching of data brings to
a reduction of the latencies up to 85%.

As a final consideration, it is important to note that the
overall system response time is strictly influenced by the
configuration of the IoT network. In the developed testbed,
the IoT network uses a simplified TSCH schedule made up
of three slots lasting 10ms, as described in [17]. Different
choices, that may depend on the network load and the service
to be provided, can modify these performances indexes.

V. CONCLUSIONS AND FUTURE WORKS

This paper presents the OAuth-IoT framework. It provides
access control functionalities for resources exposed by an
IoT domain, by leveraging and properly harmonizing existing
and widely accepted open-standards. The key element of the
OAuth-IoT framework is the Gateway, which handles the
following functionalities: (i) it collects information produced

2017 IEEE Symposium on Computers and Communications (ISCC)

6

Fig. 5. GUI of the OAuth-IoT testbed.

Fig. 6. Measured latencies.

by constrained devices through lightweight protocols recently
standardized in the IETF context, (ii) it controls access re-
quests originated by third-party applications through the well-
known OAuth 2.0 authorization framework, (iii) it supports a
variety of token formats, for properly handling applications’
authentication and authorization, and (iv) it caches retrieved
data for opportunistically serving future requests with limited
freshness requirements. Components and functionalities of
OAuth-IoT have been carefully described, and an experimental
testbed have been developed. Moreover, a preliminary perfor-
mance assessment has been carried out for demonstrating how
OAuth-IoT is able to integrate the OAuth 2.0 authorization
framework, with token formats advised by IETF, to manage

access control in the concrete IoT scenarios, without any bur-
den on constrained devices. Future directions of our research
include the evaluation of different scenarios in which one or
more owners of the resource are not online or note of them
can be not identifiable with the client, and the integration of
advanced access control schemes, such as the Attribute-Based
Access Control paradigm. More complex scenarios, involving
the interoperability between multiple IoT platforms, will be
taken into account, too.

ACKNOWLEDGEMENTS

This work was framed in the context of the project Sym-
bIoTe, which receives funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement 688156.

REFERENCES

[1] J. Granjal, E. Monteiro, and J. S. Silva, “Security for the Internet of
Things: A Survey of Existing Protocols and Open Research Issues,”
IEEE Commun. Surveys Tuts., vol. 17, no. 3, pp. 1294–1312, 2015.

[2] “IEEE Recommended Practice for Transport of Key Management Pro-
tocol (KMP) Datagrams,” IEEE Std 802.15.9-2016, Aug 2016.

[3] S. L. Keoh, S. Kumar, and H. Tschofenig, “Securing the Internet of
Things: A Standardization Perspective,” IEEE IoT J., vol. 1, no. 3, 2014.

[4] D. Hardt, “The OAuth 2.0 Authorization Framework,” IETF, RFC 6749,
Oct. 2012.

[5] S. Emerson, Y. K. Choi, D. Y. Hwang, K. S. Kim, and K. H. Kim, “An
OAuth based authentication mechanism for IoT networks,” in Int. Conf.
on Inform. and Commun. Techn. Convergence (ICTC), Oct. 2015, pp.
1072–1074.

[6] S. Cirani, M. Picone, P. Gonizzi, L. Veltri, and G. Ferrari, “IoT-OAS: An
OAuth-Based Authorization Service Architecture for Secure Services in
IoT Scenarios,” IEEE Sensors J., vol. 15, no. 2, pp. 1224–1234, Feb.
2015.

[7] L. Seitz, G. Selander, E. Wahlstroem, S. Erdtman, and H. Tschofenig,
“Authorization for the Internet of Things using OAuth 2.0 draft-ietf-ace-
oauth-authz-06,” IETF, Internet Draft, Mar. 2017.

[8] M. Jones, H. Tschofenig, and S. Erdtman, “CBOR Web Token (CWT)
draft-ietf-ace-cbor-web-token-03,” IETF, Internet Draft, Mar. 2017.

[9] J. L. Hernndez-Ramos, M. P. Pawlowski, A. J. Jara, A. F. Skarmeta,
and L. Ladid, “Toward a Lightweight Authentication and Authorization
Framework for Smart Objects,” IEEE Journal on Selected Areas in
Communications, vol. 33, no. 4, pp. 690–702, Apr. 2015.

[10] Constrained RESTful Environments (CoRE) Link Format, Internet Engi-
neering Task Force Std. RFC6690, 2012.

[11] M. R. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L. A.
Grieco, G. Boggia, and M. Dohler, “Standardized Protocol Stack for
the Internet of (Important) Things,” IEEE Communications Surveys
Tutorials, vol. 15, no. 3, pp. 1389–1406, Third 2013.

[12] M. Jones and D. Hardt, “The OAuth 2.0 Authorization Framework:
Bearer Token Usage,” IETF, RFC 4950, May 2012.

[13] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT),”
IETF, RFC 5719, May. 2015.

[14] P. Hunt, J. Richer, W. Mills, P. Mishra, and H. Tschofenig, “OAuth 2.0
Proof-of-Possession (PoP) Security Architecture draft-ietf-oauth-pop-
architecture-08.txt,” IETF, Internet Draft, Jul. 2016.

[15] X. Vilajosana, P. Tuset, T. Watteyne, and K. Pister, OpenMote: Open-
Source Prototyping Platform for the Industrial IoT. Springer Interna-
tional Publishing, 2015, pp. 211–222.

[16] T. Watteyne, X. Vilajosana, B. Kerkez, F. Chraim, K. Weekly, Q. Wang,
S. D. Glaser, and K. S. J. Pister, “OpenWSN: a Standards-Based Low-
Power Wireless Development Environment,” Trans. on Emerg. Telecom.
Technol., vol. 23, no. 5, pp. 480–493, 2012.

[17] X. Villajosana and K. Pister, “Minimal 6TiSCH Configuration, draft-
ietf-6tisch-minimal-21,” IETF, Internet Draft, Feb. 2017.

2017 IEEE Symposium on Computers and Communications (ISCC)

